
AE4879 Mission Geometry and Orbit Design

Assignment 8: Full-sky geometry
FULLSKY-2 and FULLSKY-5

Simon Billemont

November 19, 2010

1

AE4879 Mission Geometry and Orbit Design Page 2of 12

Assignment 8: Full-sky geometry

This assignment deals with familiarization of using full-sky spherical geometry in
order to solve problems instead of the traditional techniques. This document describes
two implementations. The first concerns the airplane problem, of finding the direction
back to a specific point. The second problem deals with a dual-axis spiral problem, with
considering a satellite with a rotating sensor.

1. Airplane problem
Find all the solutions to airplane problem with the given parameters:

• D1 = 30◦, f1 = 300◦, D2 = 20◦

• D1 = 30◦, f1 = 300◦, D2 = 200◦

In the airplane problem, a fictitious airplane starts from a known position on the earth
(or general sphere). It then flies in a random direction for a given distance (or angle)
over the sphere. The the plane turns over a known angle, and continues on straight
for another fixed distance. Then the plane must return to its starting point. The problem
now arises to where it must turn and how far it must then fly in order to reach the starting
point.

In this problem, the plane is on a sphere, and thus the application of spherical triangles
is the logical solution. This specific problem is also known as a side-angle-side triangle,
as these are known. This means that three quantities are known, and this is enough to
compute all the other angles and sides of the spherical triangle.

The solution to this problem can easily be found using general full-sky geometry
equations ([1] p390). The solution is summarized in eq 1-3. Here it is considered that B
is the starting point, and the plane flies via side a to point C. Then onwards to point A
over b and flies home via side c.

c(1) = cos2−1[cos a cos b+ sin a sin b cosC,H(C)] (1)

A(1) = cos2−1

[
cos a− cos b cos c(1)

sin b sin c(1)
, H(a)

]
(2)

B(1) = cos2−1

[
cos b− cos a cos c(1)

sin a sin c(1)
, H(b)

]
(3)

Where H is the hemisphere function and cos2−1 is a quadrant sensitive inverse cosine
function defined as:

H(ϕ) =

{
+1 0 ≤ ϕ mod (2π) < π

−1 π ≤ ϕ mod (2π) < 2π
(4)

cos2−1(cos(ϕ), H(ϕ)) =
(
H(ϕ) cos−1(cos(ϕ))

)
mod (2π) (5)

Simon Billemont 1387855 November 19, 2010

AE4879 Mission Geometry and Orbit Design Page 3of 12

Name C[◦] A[◦] B[◦] a[◦] b[◦] c[◦]

1.1 270.0 120.6 143.9 30.0 20.0 324.5
1.2 270.0 300.6 323.9 30.0 20.0 35.5

2.1 300.0 98.1 137.4 30.0 20.0 334.1
2.2 300.0 278.1 317.4 30.0 20.0 25.9

3.1 300.0 81.9 317.4 30.0 200.0 205.9
3.2 300.0 261.9 137.4 30.0 200.0 154.1

Table 1: Results for the three cases of the airplane problem

Note that there is also a second solution when the plane flies the other way around
the globe. This solution is described by the following equations:

c(2) = 2π − c(1) (6)

A(2) = (A(1) + π) mod (2π) (7)

B(2) = (B(1) + π) mod (2π) (8)

This calculation was done for three distinct cases, and the results can be found in
table 1.

1. Test case presented in [2] slide 19

2. a = 30◦, C = 300◦, b = 20◦

3. a = 30◦, C = 300◦, b = 200◦

2. Rotating sensor on a spinning spacecraft
Write a program that simulates an arbitrary dual-axis problem. Verify the con-
tents of the table on sheet 37. Then consider a rotating sensor on a satellite which
is spinning itself (ρ1 = ρ2 = 90◦). Apply the concept of full-sky spherical geometry
to derive the geometry (i.e. the path of elevation vs. azimuth) of the observations
of the sensor.

• Assess the coverage of the celestial sphere for the case that ρ2 = ρ1.

• Assess the coverage of the celestial sphere for the case that ρ2 = 1.01 · ρ1.

• Plot the coverage of the celestial sphere after 50 and 100 revolutions.

• Compare and discuss the results of the previous (sub)questions.

Simon Billemont 1387855 November 19, 2010

AE4879 Mission Geometry and Orbit Design Page 4of 12

Figure 1: Geometry of the dual-axis spiral (from [1] Fig.8-11 p398)

In this section, a stable spacecraft is considered, spinning around a single axis. Fur-
thermore, this spacecraft has a sensor, also spinning around is axis. Suppose that these
spin axis are separated by an angle of 90◦, and the angle from which the rotating sensor
is scanning is also 90◦. This configuration makes it possible for the sensor to scan the
entire sky. In order to reconstruct path of the field of view (FOV) of the sensor, one can
make use of a dual-axis spiral.

The dual axis spiral is basically one point P rotating about another point S, that in turn
is rotating about again another point C (see fig 1). When applying these points to the
satellite problem, there then is P representing the direction of the FOV. That is rotating
about the sensor axis (S). Since the satellite is spinning, S rotates about the spin axis C.
For more details about the dual-axis spiral see [1] section 8.2.

From this satellite configuration, one can formulate the angles ρ1 (angle sensor, satel-
lite spin axis) and ρ2 (angle FOV with sensor spin axis) as 90◦. Lastly defining ω1 as the
spin rate of the satellite and ω2 as the sensor spin rate. Using [1] Table 8-8 as a guide,
all the sides and angles in the spherical triangle can be found:

ϕ1 = ϕ1,0 + tω1 (9)

ϕ2 = ϕ2,0 + tω2 (10)

∆α = cos2−1

(
cos (ρ2) − sin(δ) cos (ρ1)

cos(δ) sin(ρ1)
,−H (ϕ2)

)
(11)

ρe = cos−1 (cos(δ) cos(∆α) sin (∆E′) + sin(δ) cos (∆E′)) (12)

ωe =
√

2ω2ω1 cos (ρ1) + ω2
1 + ω2

2 (13)

∆E′ = tan−1

(
ω2 sin (ρ1)

ω1 + cos (ρ1)ω2

)
mod π (14)

Simon Billemont 1387855 November 19, 2010

AE4879 Mission Geometry and Orbit Design Page 5of 12

Result ϕ1[◦] ϕ2[◦] δ[◦] ∆α[◦] α[◦] δ′E [◦] ρe[◦] ωe[rad/s] v[rad/s] ∆ψ[◦] ψ[◦]

test− 1 0.00 90.00 46.04 330.48 330.48 40.00 20.00 3.00 1.03 292.18 202.18
test− 2 0.00 90.00 46.04 330.48 330.48 30.31 22.14 3.82 1.44 318.70 228.70
test− 3 0.00 100.00 42.97 332.59 332.59 30.31 23.61 3.82 1.53 324.54 234.54

Table 2: Testing and verification results

∆ψ = cos2−1

(
cos (∆E′) − sin(δ) cos (ρe)

cos(δ) sin (ρe)
, H(∆α)

)
(15)

Using these intermediate values, the actual field of view path can be found in terms
azimuth (α) and elevation (δ). Furthermore also the instantaneous velocity of the FOV
over the sky sphere v and the direction of motion of the FOV ψ

α = (∆α + ϕ1) mod (2π) (16)

δ =
π

2
− cos−1 (sin (ρ1) sin (ρ2) cos (ϕ2) + cos (ρ1) cos (ρ2)) (17)

v = ωe sin (ρe) (18)

ψ =
(

∆ψ − π

2

)
mod (2π) (19)

To test the workings of these equations, several test cases presented in [2] slide 37
where re-simulated. The results of this testing procedure where near identical to the
results found on the slide (± 0.02◦) and can be found in table 2.

To evaluate the coverage of the satellite considered in this problem, ω1 and ω2 need to
be defined. We consider two distinct cases. The first where both are equal and a second
where they are non equal (eg ω2 = 1.01ω1). For both, the coverage was plotted (see fig
2 to 6)

When both rotation speeds are equal, one notices that a pure 8 figure is traced by the
FOV of the sensor (see fig 2). This means that only a small section of the sky sphere
is visible to the sensor. The figure can easily be explained. If the sensor of is facing a
particular direction, the satellite ten turns 180◦. The the senor is looking at the opposite
site it was looking before.However not only the satellite spins, also the sensor itself.
Since both rotation rates are equal, the sensor should also rotate 180◦, meaning that it is
facing the same azimuth again, but inverted elevation.

When the rotation speeds are not equal, instead of the sensor rotating 180◦, it rotates
a bit more (or less). This causes the sensor to just ’miss’, creating a small offset (see
fig 3). This small offset causes the sensor to systematically scan the entire sky. It still
repeats the same track, after 100 rotations (when both ω1 and ω2 are integers again).

What can also be seen is that after 50 revolutions, the sensor is scanning 180◦further
then when it started. This because it has a repeat orbit of 100 revolutions. Furthermore,
when looking at 50 rotations, one notices that the sensor scanned 3/4 of the sky, but of
that area, it scanned 1/4 of the sky twice. When increasing the revolutions to 100 (when
the sensor starts repeating its track precisely), it scanned the entire sky twice.

Simon Billemont 1387855 November 19, 2010

AE4879 Mission Geometry and Orbit Design Page 6of 12

Figure 2: Rotating sensor on a spinning spacecraft, ω2 = ω1, 2 revolutions

Figure 3: Rotating sensor on a spinning spacecraft, ω2 = 1.01ω1, 2 revolutions

Figure 4: Rotating sensor on a spinning spacecraft, ω2 = 1.01ω1, 50 revolutions

Simon Billemont 1387855 November 19, 2010

AE4879 Mission Geometry and Orbit Design Page 7of 12

Figure 5: Rotating sensor on a spinning spacecraft, ω2 = 1.01ω1, 100 revolutions

Figure 6: 3D overview for the 4 different cases, the color represents sample epoch (blue to red)

Simon Billemont 1387855 November 19, 2010

AE4879 Mission Geometry and Orbit Design Page 8of 12

References
[1] J. R. Wertz, Orbit & Constellation Design & Management, second printing ed. El

Segundo, California: Microcosm Press, 2009.

[2] R. Noomen, AE4-879 Full-sky spherical geometry V3.1, TUDelft Lecture Slides,
2010.

[3] MathWorks. (2010a) Matlab 7.11. Natick, MA.

Additional information
Estimated work time:

∼ 3h Studying theory + ∼ 3h making assignment + ∼ 4h writing report = ∼ 10h

Made by

Simon Billemont

Stud Nr: 1387855

s.billemont@student.tudelft.nl

License and notices

This work is licensed under the Creative Commons Attribution-NonCommercial 3.0
Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc/3.0/

Simon Billemont 1387855 November 19, 2010

AE4879 Mission Geometry and Orbit Design Page 9of 12

A. Matlab source code
The code written to implement the three described optimizers was written in MATLAB
7.11 (2010b)[3]. A structured overview of the dependencies is given below:

• FULLSKY2.m

– acos2.m

– H.m

• FULLSKY5.m

– DualAxisProblem.m

– acos2.m

– H.m

The script FULLSKY2.m solves the spherical triangle side-angle-side problem and
FULLSKY5.m solves the spinning spacecraft problem. It does this using a dual-axis
spiral problem solver (DualAxisProblem.m). Then there are the specific spherical trian-
gle function acos2.m and H.m.

Listing 1: FULLSKY2.m: Find the set of solutions for a spherical triangle
size-angle-side

1 %% By: Simon Billemont, sbillemont, 1387855
% Contact: aodtorusan@gmail.com or s.billemont@student.tudelft.nl
% Solve the Side-Angle-Side problem on a shperical triagle
% Equations from Orbit & Constellation Design & Management (ocdm)
% Made on: 15-11-2010 (dd-mm-yyyy)

6 % This work is licensed under the
% Creative Commons Attribution-NonCommercial 3.0 Unported License.
% To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/
%% Setup environment
clc

11 clearvars
close all

% Make a new utility for saving pictures
saver = ImSav();

16 saver.c_plotsDir = ’../images/matlab/’; % Where the plots will go
saver.cleanPlots; % Remove any plots already made
saver.c_changec_figSize = 0; % Do not resize
saver.c_appendFigureNr = 0; % Do not append stuff the the name

21 %% Setup constants
a = 30 * (pi/180); % D1, side
C = 300 * (pi/180); % phi1, angle
b = 20 * (pi/180); % D2, side

26 %% Compute
% First set of results (ocdm p390 eq 8-4a to 8-4c)
c(1) = acos2(cos(a)*cos(b) + sin(a)*sin(b)*cos(C) , H(C));
A(1) = acos2((cos(a) - cos(b)*cos(c))/(sin(b)*sin(c)), H(a));
B(1) = acos2((cos(b) - cos(a)*cos(c))/(sin(a)*sin(c)), H(b));

31
% Second set of results (ocdm p390 eq 8-5a to 8-5c)
c(2) = 2*pi-c(1);
A(2) = mod(A(1) + pi,2*pi);
B(2) = mod(B(1) + pi,2*pi);

36
%% Fix units to degrees
a = a * (180/pi);b = b * (180/pi);c = c * (180/pi);
A = A * (180/pi);B = B * (180/pi);C = C * (180/pi);

41 %% Output in latex table form
line = ’\t\t &\t %.1f &\t %.1f &\t %.1f &\t %.1f &\t %.1f &\t %.1f \t \\\\ \\hline \n’;
fprintf(line, C(1), A(1), B(1), a(1), b(1), c(1));
fprintf(line, C(1), A(2), B(2), a(1), b(1), c(2));

Simon Billemont 1387855 November 19, 2010

AE4879 Mission Geometry and Orbit Design Page 10of 12

Listing 2: acos2.m: Compute the quadrant sensitive arc cosine
1 f u n c t i o n [acos2] = acos2(cosPhi, H)

%ACOS2 Quadrant sensative arcCosine, uses hemisphere function H
% acos2[cos(phi),H(phi)] = {H(phi) acos(cos(phi)}modulo360
% Based on OCDM p389 eq8-2
% By: Simon Billemont, on: 15-11-2010 (dd-mm-yyyy)

6 % Licence: Creative Commons Attribution-NonCommercial 3.0 Unported License.

acos2 = mod(H .* acos(cosPhi), 2*pi);

end

Listing 3: H.m: Hemisphere function
f u n c t i o n [H] = H(phi)
%H Hemisphere function
% H(phi) = +1 if (0 <= ?modulo360 < 180 [deg])

4 % H(phi) = -1 if (180 <= ?modulo360 < 360 [deg])
% Based on OCDM p389 eq 8-1
% By: Simon Billemont, on: 15-11-2010 (dd-mm-yyyy)
% Licence: Creative Commons Attribution-NonCommercial 3.0 Unported License.
phi = mod(phi, 2*pi);

9
H = ones(size(phi));
H(pi <= phi & phi < 2*pi) = -1;

end

Listing 4: FULLSKY5.m: Solve the rotating sensor/spinning spacecraft problem
1 %% By: Simon Billemont, sbillemont, 1387855

% Contact: aodtorusan@gmail.com or s.billemont@student.tudelft.nl
% Find the path of the FOV of a sensor on a spinning spacecraft, with
% a rotating sensor.
% Equations from Orbit & Constellation Design & Management (ocdm)

6 % Made on: 16-11-2010 (dd-mm-yyyy)
% This work is licensed under the
% Creative Commons Attribution-NonCommercial 3.0 Unported License.
% To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/
%% Setup environment

11 clc
clearvars
close all

% Make a new utility for saving pictures
16 saver = ImSav();

saver.c_saveFigure = 0; % Disable it to not overwrite
saver.c_plotsDir = ’../images/’; % Where the plots will go
saver.c_changec_figSize = 0; % Do not resize
saver.c_appendFigureNr = 0; % Do not append stuff the the name

21
%% Setup constants

labels = {’test-1’,’test-2’,’test-3’, ’sensor-equal’, ...
’sensor-non-equal-2’, ’sensor-non-equal-50’, ’sensor-non-equal-100’};

26
% r1, r2, phi1_0, phi2_0, omega1, omega2
param = [40, 20, 0, 90, 0, 3; %test

40, 20, 0, 90, 1, 3; %test
40, 20, 0, 100, 1, 3; %test

31 90, 90, 0, 0, 1, 1; %w2 = 1 w1
90, 90, 0, 0, 1, 1.01]; %w2 = 1.01 w1

param(:,1:4) = param(:,1:4) * pi/180; % Convert the first 4 rows to rad

%% Tests
36

f o r i=1:3
% Create the dual-axis spiral problem with the given test parameter
dap = DualAxisProblem(param(i,:));
% Compute all the angles and rates (for t=0, default)

41 results(i) = dap.eval();
end
% Output in latex table form
f o r i=1:length(results)

fprintf(’\t\t %s & ’, labels{i});
46 s = results(i);

fn = fieldnames(s);
f o r n = 1:length(fn)

i f (any(strcmp(fn{n}, {’wE’, ’v’})))
fprintf(’%.2f & ’, s.(fn{n}));

51 e l s e
fprintf(’%.2f & ’, rad2deg(s.(fn{n})));

end
end
fprintf(’\b\b \\\\ \\hline \n’);

56 end

%% Rotating sensor

Simon Billemont 1387855 November 19, 2010

AE4879 Mission Geometry and Orbit Design Page 11of 12

% w2 = w1
n = 2; % Rotations

61 t = 0:0.05:n*param(4,5)*2*pi; % Indivitual epochs
dap = DualAxisProblem(param(4,:)); % Dual-axis problem solver
s(1) = dap.eval(t); % Get the resulting variables

% w2 = 1.01 w1
66 rotations = [2 50 100]; % Compute for all these rotations

f o r n=rotations
t = 0:0.05:n*param(4,5)*2*pi; % Time samples ...
dap = DualAxisProblem(param(5,:)); % Solver with the correct initial conditions
s(end+1) = dap.eval(t); % Get the resulting variables

71 end

%% 2D plot
% Make a plot of long vs lat (az vs el)
f o r i=1:length(s)

76 figure
% Make the plot of all the points that where tracked
scatter(rad2deg(s(i).a) , rad2deg(s(i).d), ’.’);
% Fix the plot axis range and ticks (looks better this way)
set(gca, ’YTick’, -90:30:90)

81 set(gca, ’YLim’, [-90, 90])
set(gca, ’XTick’, 0:30:360)
set(gca, ’XLim’, [0, 360])
grid on
xlabel(’Longitude []’)

86 ylabel(’Latitude []’)
saver.saveImage(labels{3+i}); % Save it to disk
close

end

91 %% 3D plot (globes)

figure
f o r i=1:length(s)

subplot(2,length(s)/2,i) % Put each globe in a subplot
96 [x,y,z] = sph2cart(s(i).a, s(i).d, ones(size(s(i).a))); % Convert az, el, 1 => x y z

% Plot the points in 3d space, with color information the sample nr
plot3k([x;y;z]’, 1:length(x))
hold on

sphere % Add a sphere
101 hold off

view(70,10) % Rotate the view of the camera
axis equal % doent squeeze the earth
axis off % Axis are useless, unit sphere
colorbar off

106 end
colormap(’gray’) %Grey spheres not to intervene with the colors of the plot
saver.saveImage(’globes’) % Save it to disk

Listing 5: DualAxisProblem.m: Generic solver for dual-axis spiral problems
1 c l a s s d e f DualAxisProblem < handle

%DUALAXISPROBLEM Solve the Dual-Axis spiral problem
% Find the angles and rates of point P in function of the given times
% For details see Orbit & Constellation Design & Management (ocdm) chapter 8
% By: Simon Billemont (s.billemont@student.tudelft.nl), on: 16-11-2010 (dd-mm-yyyy)

6 % Licence: Creative Commons Attribution-NonCommercial 3.0 Unported License.

p r o p e r t i e s (Access=public)
r1 % Initial condition; distance C => S [rad]
r2 % Initial condition; distance S => P [rad]

11 phi1_0 % Initial condition; start angle around C between North and S [rad]
phi2_0 % Initial condition; start angle around S between North and P [rad]
omega1 % Rate of ratation of S around C [rad/s]
omega2 % Rate of ratation of P around S [rad/s]

end
16

methods (Access=public)
f u n c t i o n obj = DualAxisProblem(r1, r2, phi1_0, phi2_0, omega1, omega2)

% Constructor, sets the IC, based on the given values
i f nargin == 1 % Seperate values given

21 obj.r1 = r1(1); obj.r2 = r1(2);
obj.phi1_0 = r1(3); obj.phi2_0 = r1(4);
obj.omega1 = r1(5); obj.omega2 = r1(6);

e l s e % Values given as a vector
obj.r1 = r1; obj.r2 = r2;

26 obj.phi1_0 = phi1_0; obj.phi2_0 = phi2_0;
obj.omega1 = omega1; obj.omega2 = omega2;

end
end
f u n c t i o n s = eval(obj, t)

31 % Find the angles and rates of P for the given timesamples
i f nargin==1

t=0; % Default time sample
end

36 s = struct(); % Stores all the results
% Compute the angles and rates in the order descibed in slide 36
s.phi1 = obj.azimuthS_C(t);
s.phi2 = obj.azimuthP_S(t);

Simon Billemont 1387855 November 19, 2010

AE4879 Mission Geometry and Orbit Design Page 12of 12

s.d = obj.elevationP_C(s.phi2);
41 s.da = obj.changeAzimuthP_C(s.d, s.phi2);

s.a = obj.azimuthP_C(s.phi1, s.da);
s.dE_ = obj.angleC_E(s.phi1);
s.rE = obj.angleP_E(s.dE_, s.d, s.da);
s.wE = obj.rotationE(s.phi1);

46 s.v = obj.velocityP(s.wE, s.rE);
s.dPsi = obj.changeMotionP(s.dE_, s.rE, s.d, s.da);
s.psi = obj.directionP(s.dPsi);

end
end

51
methods (Access=private)

%% Intermediate values
f u n c t i o n phi1 = azimuthS_C(obj, t)

% Azimuth of S around C relative to alpha = 0; ocdm eq 8-27
56 phi1 = obj.phi1_0 + obj.omega1 .* t;

end
f u n c t i o n phi2 = azimuthP_S(obj, t)

% Azimuth of P around S realtive to C; ocdm eq 8-27
phi2 = obj.phi2_0 + obj.omega2 .* t;

61 end
f u n c t i o n da = changeAzimuthP_C(obj, d, phi2)

% Delta alpha: Change in azimuth of P around C; ocdm eq 28-a
da = acos2(...

(cos(obj.r2)-cos(obj.r1).*sin(d))./(sin(obj.r1).*cos(d)), ...
66 -H(phi2));

end
f u n c t i o n rE = angleP_E(obj, dE_, d, da)

% rho E: Angle from P to E; ocdm eq 8-24
rE = acos(cos(dE_).*sin(d)+sin(dE_).*cos(d).*cos(da));

71 end
f u n c t i o n wE = rotationE(obj, phi1)

% omega E: Rate of ratation about E; ocdm eq 8-23b
wE = ones(size(phi1)) * ...

sqrt(obj.omega1.ˆ2 +obj.omega2.ˆ2 + 2.*obj.omega1.*obj.omega2.*cos(obj.r1));
76 end

f u n c t i o n dE_ = angleC_E(obj, phi1)
% Angle from C to E; ocdm eq 8-23a
dE_ = ones(size(phi1)) * mod(...

atan((obj.omega2.*sin(obj.r1))./(obj.omega1+obj.omega2.*cos(obj.r1))) ...
81 , pi);

end
f u n c t i o n dPsi = changeMotionP(obj, dE_, rE, d, da)

% Change in direction of motion of P; ocdm eq 8-25a
dPsi = acos2(...

86 (cos(dE_)-cos(rE).*sin(d))./(sin(rE).*cos(d)), ...
H(da));

end
%% Results
f u n c t i o n a = azimuthP_C(obj, phi1, da)

91 % Azimuth of P around C (final azimuth); ocdm eq 8-28b
a = mod(phi1 + da, 2.*pi);

end
f u n c t i o n d = elevationP_C(obj, phi2)

% Elevation of P relative to C (final elevation); ocdm eq 8-28c
96 d = pi./2 - acos(cos(obj.r1).*cos(obj.r2)+sin(obj.r1).*sin(obj.r2).*cos(phi2));

end
f u n c t i o n v = velocityP(obj, wE, rE)

% Velocity of P; ocdm eq 8-26
v = wE .* sin(rE);

101 end
f u n c t i o n psi = directionP(obj, dPsi)

% Direction of motion of P; ocdm eq 8-25b
psi = mod(dPsi - pi./2, 2.*pi);

end
106 end

end

Simon Billemont 1387855 November 19, 2010

	Airplane problem
	Rotating sensor on a spinning spacecraft
	Matlab source code

